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1. Introduction and Background 

Auditory identification, the ability to associate meaning (i.e., retrieval of 
experience-based semantic knowledge) with a sound sample, assessed via the 
accurate selection or generation of a linguistic label for a signal, is a process that 
involves recognition of a particular pattern of auditory stimulation and linking that 
information to a sound-producing event stored in memory (Ballas and Howard 
1987). The ability of a listener to link a signal to its source, thereby correctly 
identifying the signal, is determined by a combination of factors that fall broadly 
into two types of attributes: physical (i.e., acoustic) and content (i.e., semantic) 
features (Bergman et al. 2009; Gygi et al. 2007). While the literature agrees strongly 
that both acoustic and semantic information influence environmental sound 
identification (Lemaitre and Heller 2013; Lemaitre et al. 2013; Gregg and Samuel 
2009), the weight of each of these factors, and how task context might shift the 
influence of either of these features, is still largely unknown.  

There is some suggestion that the assumption auditory perception is based largely 
on acoustic characteristics is driven by research methodologies that bias 
participants toward using an acoustically driven strategy. For example, Truax 
(2001) argues that analytical listening strategies encourage listeners to focus on 
acoustic details while everyday listening is a task focused on increasing listeners’ 
awareness of the contents of their environment; that is, everyday listening 
emphasizes the identity or meaning of a sound event rather than the basic acoustic 
properties of the event—a listener hears a car pass by, not a continuous lower-
frequency broadband sound that increases in intensity and frequency as it changes 
position. This idea, that everyday listening is semantically oriented, is supported by 
sound-classification studies that suggest the potential for an environmental sound 
lexicon that mirrors the semantic organizational structure for meaningful speech. 
For example, like speech, identification of environmental sounds depends on 
frequency and familiarity but also a variety of other factors specific to 
environmental sounds, such as contextual congruency (Leech et al. 2009), the 
concreteness of the sound (Lemaitre et al. 2013), and the ease with which a sound 
can be described (Giordano et al. 2010). Ballas (1993) used listener surveys to 
gauge the frequency of occurrence for common environmental sounds; the 
ecological frequency surveys demonstrate that identification time and accuracy 
were directly related to the frequency with which a sound occurs in the 
environment. Van Petten and Rheinfelder (1995) and more recently Cummings et 
al., (2006) extended the results of Ballas (1993) by demonstrating similar accuracy 
responses and similar event-related potentials (ERPs) for speech and meaningful 
environment. Specifically, both studies found that spoken words and environmental 
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sounds elicited the N400,* indicating processing at the semantic level, differing 
only in the overall amplitude of the waveforms. These findings suggest speech and 
sound may have slightly different neural-source generators but shared spatial 
regions of processing. An in-depth discussion of the N400 is beyond the scope of 
this paper but, in general, these results support the use of identification performance 
for environmental sounds as a metric of the ease with which a linguistic descriptor 
can be applied to the sound, supporting the argument that environmental sounds are 
perceived as semantic objects.  

2. Present Study 

The current study uses an open-ended response method to evaluate identification 
accuracy and confidence ratings for a set of 41 common environmental sounds. The 
41 sounds selected for inclusion in this study fall into one of six experimenter-
defined categories: household related, alarms, animals, human generated 
(nonspeech), mechanical, and vehicle sounds. These categories were selected based 
on their consistency with other research aimed at defining categories of 
environmental sounds (Gygi et al. 2007; Houix et al. 2012; Marcell et al. 2000) and 
are consistent with a representative urban environment based on Ballas (1993) and 
our own assessment of ecological frequency (Foots et al. 2016; McArdle et al. 
2017). The open-ended identification task was selected instead of the classical 
multiple-alternative forced choice (XAFC) task, because there is some evidence 
this method may be more appropriate for measuring environmental sound 
identification as it provides more information about what cues a listener is using to 
make their identification judgment. Previous research from VanDerveer (1979), 
Ballas (1993), and Van Petten and Rheinfelder (1995) using the open-ended 
identification method for evaluation of semantic objects established that this type 
of metric can be used over the XAFC method as a strategy for gaining insight into 
not only the accuracy of the perceptual decision, but also the strategy used by the 
listener to reach that decision. For example, reaction time, word length effects, and 
lexical analyses can be conducted on open-ended response data (Duff et al., 
forthcoming 2018). Additionally, allowing open-ended responses enables for a 
larger number of stimulus evaluations than the XAFC methodology.  

The primary purpose of this study is to evaluate the identifiability of a set of 
environmental sounds to be used in the creation of auditory arrays in subsequent 
experiments (Gygi and Shafiro [2009, 2010] discuss the growing recognition of the 
importance of norming). We expect to observe a range of accuracies, which will 

                                                 
* N400 has been defined as “[t]he component of the ERP which has been mostly closely tied to language 

processing … a late negative wave peaking at about 400 msec post-stimulus onset” (Van Patten and 
Rheinfelder 1995). 
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vary as a function of stimulus category. Specifically, as has been previously 
reported, we expect sounds generated from living sources (humans and animals) 
will be identified with greater accuracy than sounds generated from nonliving 
sources (vehicles and mechanical) with the likely exception of alarms, which for 
most adults are highly meaningful and tend to capture attention effectively. 
(Stavropoulos and Carver [2016] discuss living versus nonliving sounds, while 
Catchpole and McKeown [2017] provide overview of auditory alarms.)  

3. Methods 

3.1 Participants 

Fifteen undergraduate students volunteered to serve as listeners in this study. All 
participants passed a hearing screening, defined as correctly responding to pure tone 
signals presented at intervals of 500, 1000, 2000, 4000, and 8000 Hz at 25 dB(HL) 
on a GSI Arrow 1800 audiometer with a TDH 39 headset. All participants provided 
informed consent and received course credit for their participation in the study.  

3.2 Stimuli 

Table 1 contains a list of the 41 environmental sounds used in the current study. 
Thirty-one of the sounds were downloaded from freesound.org, an open-access, 
user-supported sound library; four were recorded specifically for inclusion in this 
study; and six were samples selected from an existing sound library at the US Army 
Research Laboratory. Table 1 also lists an experimenter-defined category assigned 
to each of the sounds. All sounds were normalized for duration and level in Adobe 
Audition (CS 6 v. 5.0.2). Specifically, each sound was shortened to 1000 ms, 
including 5-ms linear on–off ramps. In addition, sounds were normalized for root-
mean-square amplitude through a batch process to minimize potential loudness 
differences among sounds.  
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Table 1 Average accuracy, standard-error (SE), and confidence ratings for each of the 41 
stimuli presented to listeners 

Stimulus Category Accuracy SE Confidence SE 
Dishes1 Household 0.689 0.108 5.643 0.382 
Metal1 Household 0.101 0.051 4.173 0.367 

Pouring1 Household 1.000 0.000 6.707 0.136 
ShakingCans1 Household 0.033 0.027 3.457 0.350 
ShovelScrape1 Household 0.029 0.018 4.690 0.428 

Waves1 Household 0.217 0.090 4.280 0.325 
Alarm1 Alarm 0.827 0.089 6.120 0.244 
Bell1 Alarm 1.000 0.000 6.627 0.223 
Bell2 Alarm 0.987 0.013 6.703 0.148 

Cellphone1 Alarm 0.920 0.067 6.613 0.158 
Crickets1 Animal 0.813 0.079 6.267 0.238 
Crickets2 Animal 0.947 0.041 6.680 0.140 

Dog1 Animal 0.986 0.013 6.880 0.093 
Dog2 Animal 0.293 0.112 5.973 0.195 
Dog3 Animal 0.493 0.122 5.274 0.359 
Baby1 Human 1.000 0.000 6.800 0.200 
Baby2 Human 1.000 0.000 6.760 0.226 

Walking1 Human 0.726 0.102 5.343 0.347 
Walking2 Human 0.840 0.081 5.710 0.326 

Bike1 Mechanical 0.507 0.128 4.673 0.494 
Bike2 Mechanical 0.471 0.127 4.693 0.420 

Jackhammer1 Mechanical 0.760 0.107 6.113 0.274 
Lighter1 Mechanical 0.757 0.105 5.947 0.348 

Shopvac1 Mechanical 0.824 0.089 6.547 0.183 
Shopvac2 Mechanical 0.507 0.106 5.530 0.311 

Bus1 Vehicle 0.528 0.104 5.357 0.323 
Bus2 Vehicle 0.534 0.113 5.387 0.288 
Bus3 Vehicle 0.397 0.100 4.497 0.350 
Bus4 Vehicle 0.486 0.115 5.363 0.298 

Helicopter1 Vehicle 0.680 0.108 5.740 0.307 
Helicopter2 Vehicle 0.853 0.074 5.893 0.265 
Motorcycle1 Vehicle 0.288 0.057 5.073 0.242 
Motorcycle2 Vehicle 0.573 0.101 5.750 0.215 

Plane1 Vehicle 0.613 0.118 5.857 0.241 
Plane2 Vehicle 0.493 0.121 4.337 0.445 
Plane3 Vehicle 0.413 0.118 5.547 0.314 
Tank1 Vehicle 0.320 0.073 5.203 0.266 
Truck1 Vehicle 0.773 0.070 5.807 0.323 
Truck2 Vehicle 0.473 0.072 5.120 0.191 
Truck3 Vehicle 0.722 0.086 5.547 0.228 
Van1 Vehicle 0.149 0.044 4.483 0.341 
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3.3 Materials and Apparatus 

All sounds were presented to listeners over Beyerdynamics T 70 closed reference 
headphones at a comfortable experimenter set listening level of 70dB(C). The 
presentation, timing, and recording of participant responses were controlled by 
E-Prime experiment development platform (Psychology Software 2012). The E-
Prime experiment was run on a standard desktop computer.  

3.4 Procedures 

Following informed consent, listeners completed a hearing screening and then 
moved to the experimental computer and donned the headphone set. Each of the 41 
sounds was presented to listeners five times (205 trials per participant) and the order 
of stimulus presentation was fully randomized. On each trial, the listener would 
press the spacebar to begin; the prompt “listen” would display 500 ms before 
stimulus onset and was displayed for the duration of the sound presentation 
(1000 ms). At the end of the sound, a text field appeared and participants typed 
their identification response using the computer keyboard. Participants were not 
given any specific instructions to shape the specificity of their response; they were 
simply instructed to use the label that made the most sense to them. Following the 
identification response, listeners were then prompted to rate their confidence in 
their identification label using a 1–7 Likert-type scale where “7” was highly 
confident and “1” was highly unconfident. Trials were self-paced, and a new trial 
began only after the participant initiated the trial by pressing the spacebar. Listeners 
were instructed to keep their responses brief and to restrict responses to a single 
word or short phrase; however, there was no limit on the number of characters that 
could occur in the participant-response field. The brevity instruction was meant to 
reduce the complexity of the response-classification task for subsequent coding by 
experimental raters.  

3.5 Data Processing 

When listeners are allowed to freely identify, the determination of the correctness 
of that response must be operationally defined to avoid the possibility of biased 
scoring. The current study adopted the same response-classification criteria as 
VanDerveer (1979), where a response was considered correct if it referred to the 
generating event or to a class of events that would include the generating event. For 
example, when responding to the sound “helicopter”, responses such as “blades 
chopping the air” or “blades moving through air” would be considered correct (in 
addition to simply providing the label helicopter). Alternatively, responses such as 
“lawn mower” or “chopping noise” while describing similar events would be near 
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misses and labeled as incorrect responses. Text responses were evaluated by two 
independent raters and classified as either a correct or incorrect response. Rated 
responses were then converted to either a one or zero so that proportion correct 
could be calculated for each sound event. The proportion correct was also 
calculated for items belonging to one of the six associated categories listed in Table 
1 to examine an overall proportion correct for each sound category.  

3.6 Inter-rater Reliability 

Both raters evaluated all of the data produced by the entire sample of 15 
participants. The Pearson correlation coefficient for the relationship between the 
two raters’ scores was r = 0.97. However, Pearson correlation measures of  
inter-rater reliability for binary variables are often elevated by the high likelihood 
that the raters will agree simply based on chance. To control for this possibility, 
inter-rater reliability was also evaluated using Cohen’s Kappa, which corrects for 
agreement by chance. The raters in this study produced a kappa score (κ = 0.75) 
that was significantly greater than chance (p <.001). This kappa score reflects 
substantial agreement between raters (Cohen 1960), and this level of agreement 
between raters means the criteria for recoding the open-ended responses as binary 
accuracy data were both clear and stable across the 3,075 trials included in the inter-
rater reliability evaluation. (The reliability raters were authors Dickerson and Foots; 
on trials where the raters disagreed, Dickerson was the deciding authority with 
scores produced by Dickerson as the point of comparisons.)  

4. Results and Discussion 

All of the analyses that follow are based on the converted responses and confidence 
ratings. The identification responses were classified as either correct or incorrect 
and represent a binary measure of accuracy.  

4.1 Identification Accuracy 

Proportion correct was computed for each stimulus item for each participant. The 
total number of presentations of each stimulus (denominator in proportion-correct 
calculation) was adjusted to remove trials where no response was provided. This 
data-cleaning resulted in a loss of only 35 trials, distributed evenly across 
participants and stimulus items, reflecting a loss of only 1.8% of the total trials. 
This data-cleaning ensured the reported analyses only reflect responses made by 
participants and not the absence of response, which could have occurred for a 
variety of reasons. 
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Overall, average identification accuracy varied substantially across each of the 41 
sounds in the sample (M = 0.61, SE = 0.04, Min = 0.02, Max = 1.00; see Table 1). 
For subsequent analyses we grouped the 41 stimuli into six meaning-based 
categories: household items (N = 6), alarms (N = 4), animal/insect (N = 5), human-
generated nonspeech (N = 4), nonvehicle mechanical sounds (N = 6), and vehicles 
(N = 16). These six experimenter-defined categories and the number of items within 
each category were created based on a previous study (Foots et al. 2016; McArdle 
et al. 2017) where ecological frequency for environmental sounds was measured 
based on sampling from a real urban environment in the greater Baltimore, 
Maryland, area. The heavy representation of vehicles in this sound set is intentional 
and representative of most adults’ everyday environment. The means for each of 
the six experimenter-defined categories are depicted in Fig. 1.  

To examine the differences in identification accuracy as a function of category 
membership and representativeness of the everyday environment, a  
repeated-measures analysis of variance (ANOVA) was conducted on proportion 
correct for each of the six categories. Identification accuracy in terms of proportion 
correct varied significantly as a function of the six categories, F(5,70) = 31.43, p < 
0.001, pη2 = .69. Post-hoc contrasts revealed that alarms and human-generated 
sounds did not differ significantly from one another, p = .47, nor did the vehicle 
and mechanical categories, p = .07. All other categories significantly differed from 
one another, p < .05. The lack of difference between alarms and humans could 
reflect a benefit of signal salience or prior experience with signals of that type. In 
the case of both alarms and human-generated sounds, there are both behavioral and 
neural data to suggest preferential processing (related discussion in Starvropoulos 
and Carver [2016]). The mechanical and vehicle groups were not significantly 
different from one another, which could indicate that for the participants tested 
these signals did not represent distinct categories but rather were examples of 
members from a single broader category. Practically speaking, the differences or 
lack thereof among each of the categories could be due to uneven numbers of items 
at each category or the experimenter-defined categorical structure. (This issue is 
reviewed in detail in Section 5.)  
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Fig. 1 Data show significant differences in accuracy across different stimulus categories, 
although superordinate category membership did not explain a significant portion of the 
variance in response.  

4.2 Confidence Ratings 

On each trial following the identification response, listeners were asked to indicate 
on a scale of 1 to 7, from least to most confident, how certain they were of the 
accuracy of the label they generated for each sound. Figure 2 shows the average 
confidence rating for each of the sound categories. Overall listener confidence 
ratings were slightly skewed toward more positive (M = 5.59, SE = 0.13, Min = 
3.46, Max = 6.88), suggesting that listeners reported they thought their responses 
were generally accurate. A repeated-measures ANOVA with category (6) as a 
factor was conducted for the confidence ratings. The results showed a significant 
difference in confidence ratings across categories, F(5, 70) = 21.09, p < 0.001, pη2 

= 0.60. However, despite an overall effect of category, post-hoc contrasts revealed 
that this difference was primarily driven by differences between two categories. 
The vehicle and household items categories were significantly different from one 
another (p < 0.05), with lower confidence ratings for the household sound group, 
and these two categories had significantly lower confidence ratings than all other 
categories (p < 0.01). One qualitative observation from the identification responses 
associated with the confidence ratings for the items in these two categories in 
particular: The identification descriptions provided when confidence was low 
tended to be less specific and rely on creating words to articulate the sound 
produced by the object, rather than an object label, as was the case for the other 
categories. For example, a participant who did not use the label “motorcycle” 
instead wrote “motor going blubbbbbb”. This anecdote suggests there may be 
differences in the way the identity of a sound is represented when a label is available 
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versus unavailable. We are currently following up on this effect with a lexical and 
content analysis for the sounds used here along with a related image set.  

 
Fig. 2 The effect of stimulus category on response confidence was significant; what is clear 
from the means is the differences across categories are smaller than those observed for the 
accuracy measure. 

4.3 Relationship between Accuracy and Response Confidence 

Overall, there was a positive correlation between identification accuracy 
(calculated as proportion correct) and confidence in responding r = 0.56, p < 0.001 
(Fig. 3). Multiple regression was used to further explore the relationship among 
identification accuracy, confidence ratings, and stimulus category. With 
identification accuracy as the dependent variable, the model was significant  
R2 = 0.353, F(2, 612) = 168.70, p < 0.001. These results suggest that both stimulus 
category and a listener’s confidence in their response are important determinants of 
response accuracy for identification tasks; however, further study is needed to 
determine a mechanism underlying the link between accuracy and confidence.  
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Fig. 3 Strong positive correlation shown between identification accuracy and listeners’ 
confidence in their responses 

5. Conclusions 

To summarize, the results of the current study reveal that sound-identification 
accuracy changes as a function of sound category, but that experimenter-defined 
categories may not best represent the way participants would group sounds together 
when asked. The benefit of a priori versus post-hoc category formation is a 
methodological question, and there is no clear “correct” strategy for grouping 
stimuli. Conservatively, if the goal is stimulus characterization through 
documentation of the semantic properties of a stimulus set, it may be better to 
examine the stimuli as individual items rather than categorically. Further, category 
membership often depends on the context provided by the full set of items, so 
categories formed during open-ended identification may not generalize to a 
different response metric or a set of items that contains only a subset of the original 
items. Thus, while categorization helps streamline the discussion of the findings for 
the current stimulus set, for stimulus norming purposes it may be “best practice” to 
consider individual items. Practically, identification of environmental sounds is an 
important aspect of environmental awareness or, in the military domain, situation 
awareness (SA). Environmental sound identification is linked to both the acoustics 
and the semantics of the sound-producing event. The evidence provide by our open-
ended identification task supports this finding; semantic information is critical in 
supporting good SA. Semantic information supports environmental sound because 
environmental sounds are inherently meaningful and the differences in 
identification as a function of concreteness suggest there may be lexical- or 
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linguistic-level processing of these sound events. A number of studies have 
revealed there are common perceptual processes underlying speech and nonspeech 
perception (Deihl et al. [2004] has an excellent review) and, specifically, others 
have suggested that both acoustic and semantic properties contribute to 
environmental sound perception (Gygi et al. 2007; Giordano et al. 2010). The 
present study is one in a series of experiments that seeks to better understand and 
quantify meaning-based or semantic influence on perception for items that are 
common in real-world environments.  
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